Preliminary Results from the Flu/Cy/Alemtuzumab arm of the Phase I BALLI-01 Trial of UCART22, an Anti-CD22 Allogeneic CAR T-Cell Product, in Adult Patients with Relapsed or Refractory CD22+ B-Cell Acute Lymphoblastic Leukemia

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Weill Cornell Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UC


Introduction

- There is a high unmet medical need in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL)
- Standard therapy for adults with B-ALL involves multi-agent chemotherapy ± allogeneic stem cell transplant¹
- 30-60% of patients with newly diagnosed B-ALL who attain complete remission (CR) will relapse²
- Prognosis is poor for R/R B-ALL (~10% overall survival at 5 years)²
- Allogeneic chimeric antigen receptor (CAR) T-cell therapies have the potential to provide benefit in aggressive cancers (Figure 1)
- Lymphodepletion (LD) before CAR T-cell therapy prolongs the persistence of CAR T-cells and increases effectiveness of treatment. Although fludarabine/cyclophosphamide (FC) provides effective LD in multiple tumor types, there is opportunity for optimization
- UCART19 with an LD regimen that also included alemtuzumab (FCA) demonstrated efficacy in R/R B-ALL patients³

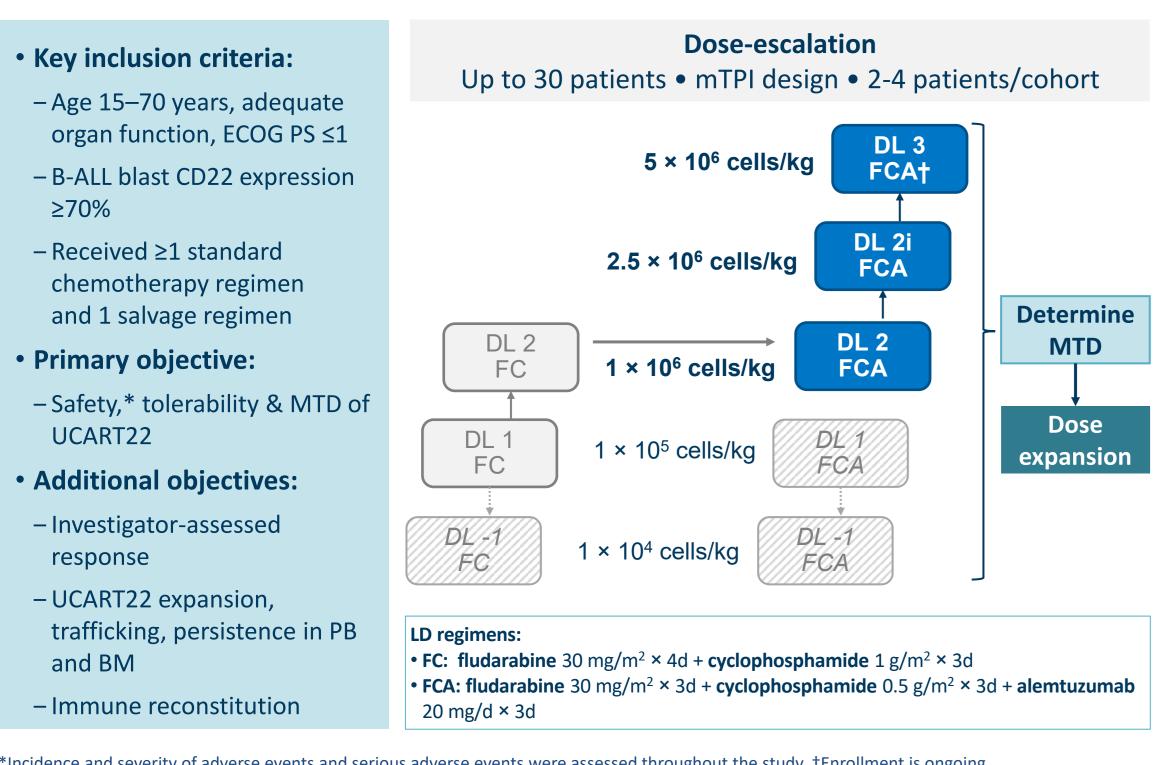
Figure 1. UCART22: Allogeneic "Off-the-Shelf" T-cell Product

UCART22 (anti-CD22 scFv-41BB-CD3ζ):

- Genetically modified allogeneic T-cell product manufactured from non-HLAmatched healthy donor cells
- CD22 surface molecule is a validated therapeutic target in B-ALL
- *TRAC* disrupted using TALEN[®] to eliminate TCR $\alpha\beta$ from the cell surface and reduce risk of GvHD
- *CD52* disrupted using TALEN[®] to eliminate sensitivity to LD with alemtuzumab

PATIENT PRODUCT

"Off-the-shelf" availability


*Incidence and severity of adverse events and serious adverse events were assessed throughout the study. †Enrollment is ongoing. B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; DL, dose level; d, days; ECOG PS, Eastern Cooperative Oncology Group performance status; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; LD, lymphodepletion; MTD, maximum tolerated dose; mTPI, modified Toxicity Probability Interval; PB, peripheral blood.

- Preliminary results from the phase 1, open-label, dose-escalation BALLI-01 study in patients with R/R B-ALL showed that UCART22 is tolerable and has demonstrated anti-leukemic activity after LD with FC⁴
- Host T-cell recovery was observed in all patients receiving LD with FC between days 7–28, potentially interfering with UCART22 expansion and persistence
- Alemtuzumab was added to the LD regimen to improve host lymphocyte suppression

Study Design

• BALLI-01 is an ongoing phase 1, open-label, dose-escalation trial (ClinicalTrials.gov NCT04150497) to evaluate the safety and efficacy of UCART22 (Figure 2)

Figure 2. BALLI-01 Study Design (NCT04150497)

*Incidence and severity of adverse events and serious adverse events were assessed throughout the study. +Enrollment is ongoing. B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; DL, dose level; d, days; ECOG PS, Eastern Cooperative Oncology Group performance status; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; LD, lymphodepletion; MTD, maximum tolerated dose; mTPI, modified Toxicity Probability Interval; PB, peripheral blood.

- Aims
- To evaluate the safety and anti-leukemic activity of UCART22 after an FCA LD regimen
- To assess whether the addition of alemtuzumab to the FC LD regimen can deepen and sustain host lymphocyte depletion and promote CAR T-cell expansion and persistence

This communication as of this date and does not undertake to update any forward-looking statements concerning Cellectis SA and its business. Cellectis SA is providing this communication as of this date and does not undertake to update any forward-looking statements contained herein as a proprietary information. TALEN[®] and Cellectis[®] are trademarks owned by the Cellectis Group.

Nitin Jain¹, Gail J. Roboz², Marina Konopleva¹, Hongtao Liu³, Gary J. Schiller⁴, Elias J. Jabbour¹, Pinkal Desai², Deborah Whitfield⁵, Asifa Haider⁵, Oleg Zernovak⁵, Mark G. Frattini⁵, Carrie Brownstein⁵, and Richard A. Larson³

Study Objectives

• The primary objective is the safety, tolerability, and maximum tolerated dose (MTD) of UCART22

- Dose-limiting toxicities (DLT) are assessed over a 28-day observation period after UCART22 infusion Additional objectives include:

- Anti-leukemic activity by investigator assessment
- Expansion, trafficking, and persistence of UCART22 in peripheral blood (PB) and bone marrow (BM) by phenotypic analysis using flow cytometry and vector copy number (VCN) using quantitative PCR
- Immune reconstitution
- Monitoring inflammatory markers

Patients

- As of 1 October 2021, 12 patients received LD; 11 patients were treated with UCART22, 6 of whom received LD with FCA
- FC-DL1; n = 3
- FC-DL2; n = 2
- FCA-DL2; n = 3
- FCA-DL2i; n = 3

 Table 1. Baseline Characteristics

Characteristic	Total N = 12*
Age, median (range), years	30.5 (20-61)
Female, n (%)	7 (58)
ECOG PS 1, n (%)	8 (67)
WHO 2016 Classification, n (%)	
B-ALL with recurrent genetic abnormalities	7 (58)
B-ALL with CRLF2 rearrangement	4 (33)
B-ALL with t(1;19)(q23;p13.3); <i>TCF3-PBX1</i>	1 (8)
B-ALL with t(9:22)(q34.1;q11.2); <i>BCR-ABL1</i>	1 (8)
B-ALL with hypodiploidy	1 (8)
B-ALL not otherwise specified	5 (42)
Number of prior treatments, median (range)	3 (2-6)
Prior HSCT, n (%)	3 (25)
Prior blinatumomab, n/N (%)	8/11 (73)
Prior inotuzumab, n/N (%)	5/11 (45)
Prior CD19 CAR T-cell therapy, n/N (%)	3/11 (27)

*11 of the 12 patients who received LD with FC or FCA were treated with UCART22 B-ALL, B-cell acute lymphoblastic leukemia; BCR, breakpoint cluster region; CAR, chimeric antigen receptor; ECOG PS, Eastern Cooperative Oncology Group performance status; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; HSCT, hematopoietic stem cell transplantation; LD, lymphodepletion; TCF3, transcription factor 3; t, translocation; PBX1, pre-B-cell leukemia homeobox 1; WHO, World Health Organization.

Safety

- The FCA LD regimen was well tolerated, and most treatment-emergent adverse events (TEAEs) of interest (Table 2) were manageable with standard guidelines
- No DLTs were observed
- No immune effector cell-associated neurotoxicity syndrome (ICANS)⁵
- 3 patients experienced cytokine release syndrome (CRS) (grade [G]1, n = 2; G2, n = 1) for 2, 4, and 6 days⁵
- 1 patient experienced GII graft-vs-host disease (GvHD) of the skin⁶
- 2 patients experienced 3 G \geq 3 infections that were not related to study drug
- Pneumonia, septic shock, staphylococcal bacteremia
- Serious TEAEs (all cause) are shown in **Table 3**

Table 2. UCART22-Related TEAEs*

TEAE, n (%)	Combined FC cohorts n = 5		FCA-DL2 n = 3		FCA-DL2i n = 3		Combined FCA cohorts n = 6		All patients N =11	
	Any	Grade	Any	Grade	Any	Grade	Any	Grade	Any	Grade
	grade	≥3	grade	≥3	grade	≥3	grade	≥3	grade	≥3
CRS ⁵	3 (60)	0	1 (33)	0	2 (67)	0	3 (50)	0	6 (55)	0
Headache	2 (40)	0	0	0	0	0	0	0	2 (18)	0
Arthralgia	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
GvHD in skin ⁶	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
Hypotension	1 (20)	0	0	0	0	0	0	0	1 (9)	0
Myalgia	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
Pruritus	0	0	1 (33)	0	0	0	1 (17)	0	1 (9)	0
Pyrexia	1 (20)	0	0	0	0	0	0	0	1 (9)	0
Rash	0	0	1 (33)	0	0	0	1 (17)	0	1 (9)	0

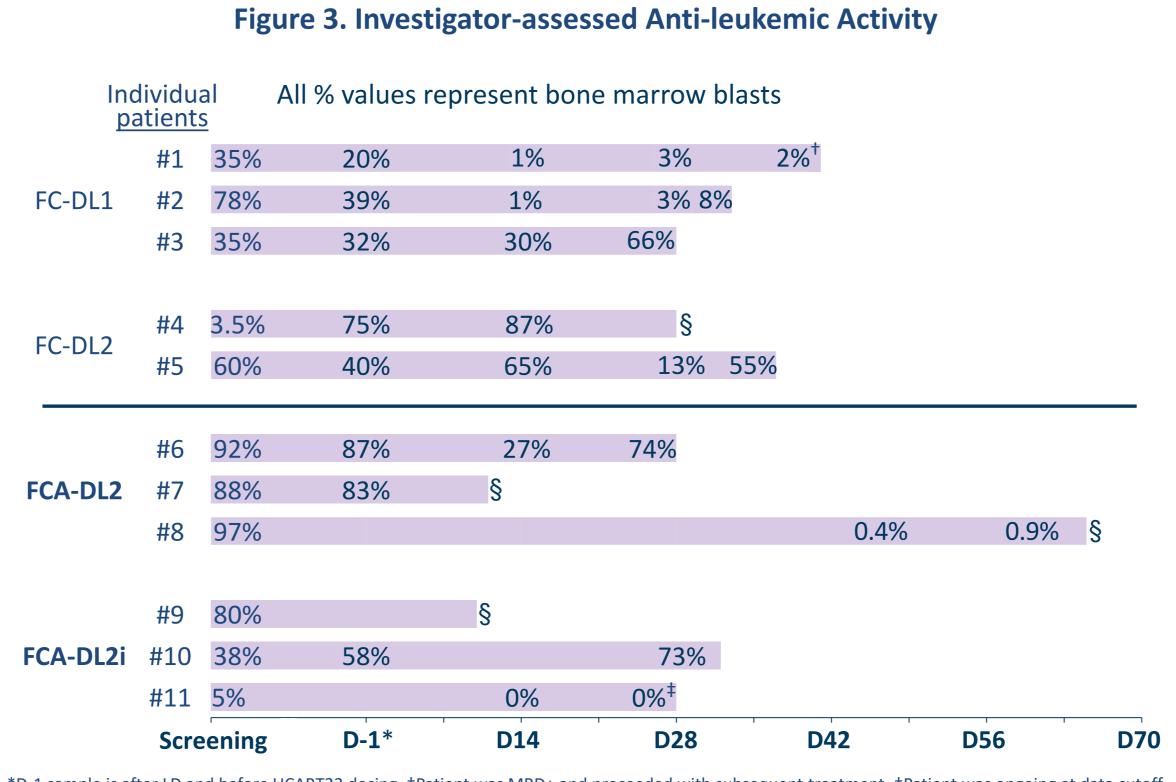
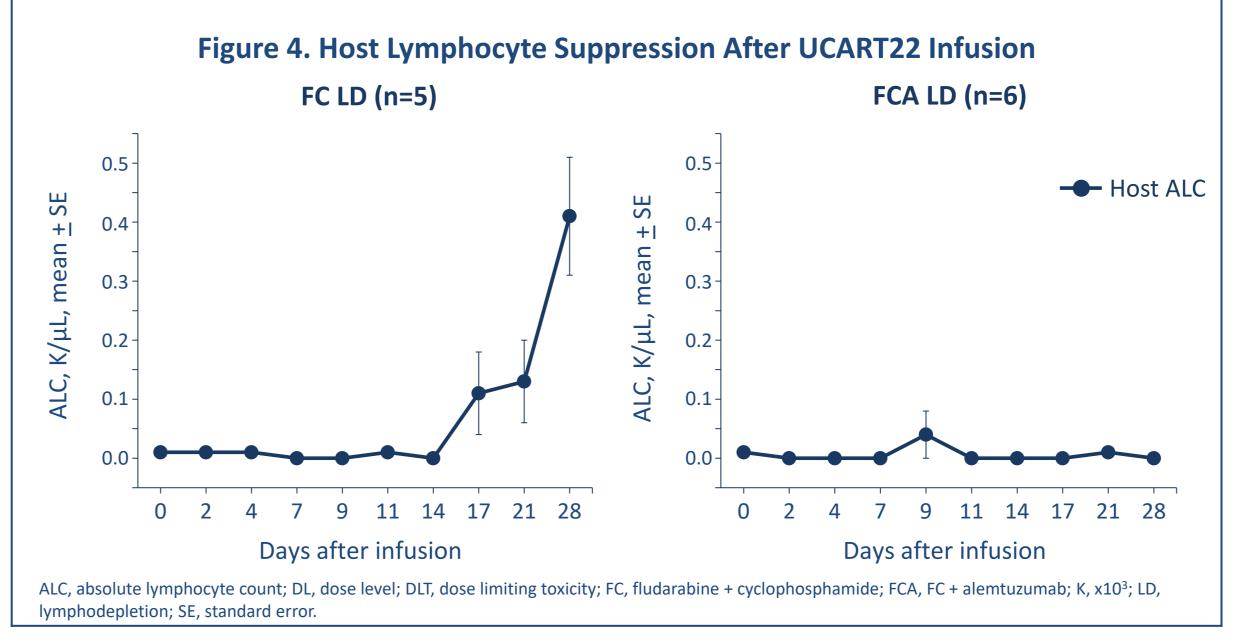

CRS, cytokine release syndrome; DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; GVHD, graft-vs-host disease; TEAE, treatment-emergent adverse event.

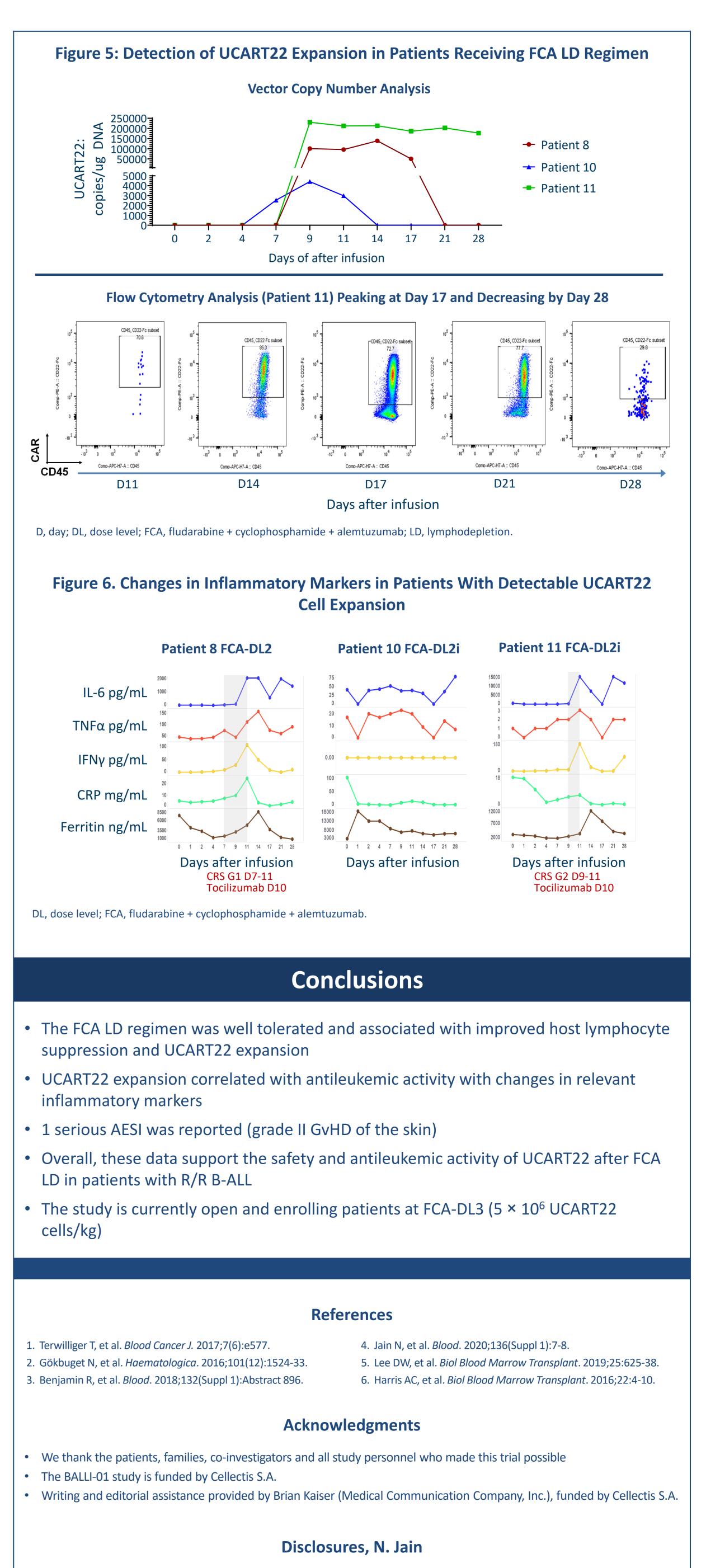
Table 3. Serious TEAEs (All Cause)										
TEAE, n (%)	Combined FC cohorts n = 5		FCA-DL2 n = 3		FCA-DL2i n = 3		Combined FCA cohorts n = 6		All patients N =11	
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3
Febrile neutropenia	1 (20)	1 (20)	1 (33)	1 (33)	1 (33)	1 (33)	2 (33)	2 (33)	3 (27)	3 (27)
Acute respiratory failure	1 (20)	1 (20)	0	0	1 (33)	1 (33)	1 (17)	1 (17)	2 (18)	2 (18)
Bacterial sepsis	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	1 (9)
Colitis ischemic	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)
Epistaxis	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)
Hyperbilirubinemia	0	0	1 (33)	1 (33)	0	0	1 (17)	1 (17)	1 (9)	1 (9)
Pneumonia	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)
Sepsis	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	1 (9)
Subarachnoid hemorrhage	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	1 (9)
Embolic hemorrhagic and non-hemorrhagic infarct*	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)
GvHD in skin	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
Hepatic hematoma	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	0
Pyrexia	0	0	1 (33)	0	0	0	1 (17)	0	1 (9)	0
Sinus tachycardia	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0

*Verbatim term (not coded) DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; GvHD, graft-vs-host disease; TEAE, treatment-emergent adverse event.

Anti-leukemic Activity


Anti-leukemic activity was seen in 2 patients in the FCA cohort (Figure 3)

*D-1 sample is after LD and before UCART22 dosing. +Patient was MRD+ and proceeded with subsequent treatment. +Patient was ongoing at data cutoff (1-Oct 2021). §Presence of peripheral blood blasts. D, day; DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; LD, lymphodepletion; SCR, screening; MRD, measurable residual disease.


Host Lymphocyte Suppression and UCART22 Expansion

- Host lymphocytes on average remained suppressed throughout the 28-day DLT observation period for all 6 patients in the FCA-DL2 and DL2i cohorts (Figure 4)
- UCART22 proliferation was observed in 3 patients in the FCA cohorts (Figure 5) and correlated with changes in inflammatory cytokines (Figure 6)

Research funding

 Cellectis, Pharmacyclics, AbbVie, Genentech, AstraZeneca, BMS, Pfizer, Servier, ADC Therapeutics, Adaptive Biotechnologies, Incyte, Precision Biosciences, Aprea Therapeutics, Fate Therapeutics, Mingsight, Takeda, Medisix, Loxo Oncology, Novalgen

Advisory committee / Honoraria

- Cellectis, Pharmacyclics, Janssen, AbbVie, Genentech, AstraZeneca, BMS, Adaptive Biotechnologies, Servier, Precision Biosciences, Beigene, TG Therapeutics, ADC Therapeutics, MEI Pharma

For questions or comments, please contact Dr. Nitin Jain: njain@mdanderson.org For more information, please contact clinicaltrials@cellectis.com