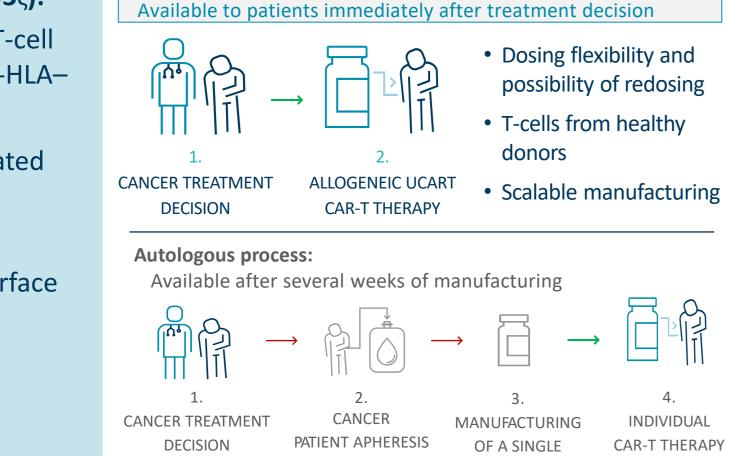
Preliminary Results from the Flu/Cy/Alemtuzumab arm of the Phase I BALLI-01 Trial of UCART22, an Anti-CD22 Allogeneic CAR T-Cell Product, in Adult Patients with Relapsed or Refractory CD22+ B-Cell Acute Lymphoblastic Leukemia

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Weill Cornell Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁵Cellectis Inc., New York, NY; ³University of Chicago, IL; ⁴David Geffen School of Medicine at UCLA, Los Angeles, IC, ⁴David Geffen School of Medicine at UCLA, Los Angeles, IC, ⁴Dav


Introduction

- There is a high unmet medical need in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL)
- Standard therapy for adults with B-ALL involves multi-agent chemotherapy ± allogeneic stem cell transplant¹
- 30-60% of patients with newly diagnosed B-ALL who attain complete remission (CR) will relapse²
- Prognosis is poor for R/R B-ALL (~10% overall survival at 5 years)²
- Allogeneic chimeric antigen receptor (CAR) T-cell therapies have the potential to provide benefit in aggressive cancers (Figure 1)
- Lymphodepletion (LD) before CAR T-cell therapy prolongs the persistence of CAR T-cells and increases effectiveness of treatment. Although fludarabine/cyclophosphamide (FC) provides effective LD in multiple tumor types, there is opportunity for optimization
- UCART19 with an LD regimen that also included alemtuzumab (FCA) demonstrated efficacy in R/R B-ALL patients³

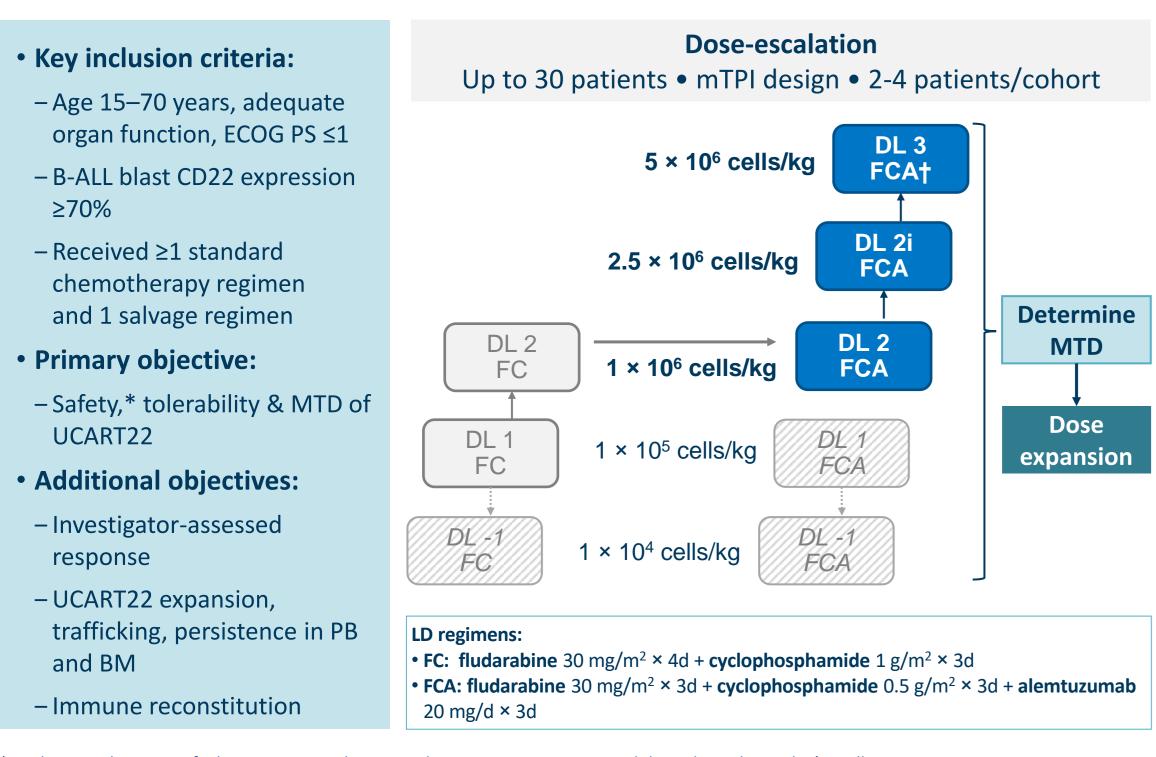
Figure 1. UCART22: Allogeneic "Off-the-Shelf" T-cell Product

UCART22 (anti-CD22 scFv-41BB-CD3ζ):

- Genetically modified allogeneic T-cell product manufactured from non-HLAmatched healthy donor cells
- CD22 surface molecule is a validated therapeutic target in B-ALL
- *TRAC* disrupted using TALEN[®] to eliminate TCRαβ from the cell surface and reduce risk of GvHD
- *CD52* disrupted using TALEN[®] to eliminate sensitivity to LD with alemtuzumab

PATIENT PRODUCT

"Off-the-shelf" availability


*Incidence and severity of adverse events and serious adverse events were assessed throughout the study. †Enrollment is ongoing. B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; DL, dose level; d, days; ECOG PS, Eastern Cooperative Oncology Group performance status FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; LD, lymphodepletion; MTD, maximum tolerated dose; mTPI, modified Toxicity Probability Interval; PB, peripheral blood.

- Preliminary results from the phase 1, open-label, dose-escalation BALLI-01 study in patients with R/R B-ALL showed that UCART22 is tolerable and has demonstrated anti-leukemic activity after LD with FC⁴
- Host T-cell recovery was observed in all patients receiving LD with FC between days 7–28, potentially interfering with UCART22 expansion and persistence
- Alemtuzumab was added to the LD regimen to improve host lymphocyte suppression

Study Design

• BALLI-01 is an ongoing phase 1, open-label, dose-escalation trial (ClinicalTrials.gov NCT04150497) to evaluate the safety and efficacy of UCART22 (Figure 2)

Figure 2. BALLI-01 Study Design (NCT04150497)

*Incidence and severity of adverse events and serious adverse events were assessed throughout the study. +Enrollment is ongoing. B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; DL, dose level; d, days; ECOG PS, Eastern Cooperative Oncology Group performance status; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; LD, lymphodepletion; MTD, maximum tolerated dose; mTPI, modified Toxicity Probability Interval; PB, peripheral blood.

- Aims
- To evaluate the safety and anti-leukemic activity of UCART22 after an FCA LD regimen
- To assess whether the addition of alemtuzumab to the FC LD regimen can deepen and sustain host lymphocyte depletion and promote CAR T-cell expansion and persistence

This communication as of this date and does not undertake to update any forward-looking statements concerning Cellectis SA and its business. Cellectis SA is providing this communication contains Cellectis? proprietary information. TALEN[®] and Cellectis[®] are trademarks owned by the Cellectis Group.

Nitin Jain¹, Gail J. Roboz², Marina Konopleva¹, Hongtao Liu³, Gary J. Schiller⁴, Elias J. Jabbour¹, Pinkal Desai², Netrie Brownstein⁵, and Richard A. Larson³

Study Ob	jectives
----------	----------

- The primary objective is the safety, tolerability, and maximum tolerated dose (MTD) of UCART22
- Dose-limiting toxicities (DLT) are assessed over a 28-day observation period after UCART22 infusion Additional objectives include:
- Anti-leukemic activity by investigator assessment
- Expansion, trafficking, and persistence of UCART22 in peripheral blood (PB) and bone marrow (BM) by phenotypic analysis using flow cytometry and vector copy number (VCN) using quantitative PCR
- Immune reconstitution
- Monitoring inflammatory markers

Patients

- As of 1 October 2021, 12 patients received LD; 11 patients were treated with UCART22, 6 of whom received LD with FCA
- FC-DL1; n = 3
- FC-DL2; n = 2
- FCA-DL2; n = 3
- FCA-DL2i; n = 3

Table 1. Baseline Characteristics

Characteristic	Total N = 12*
Age, median (range), years	30.5 (20-61)
Female, n (%)	7 (58)
ECOG PS 1, n (%)	8 (67)
WHO 2016 Classification, n (%)	
B-ALL with recurrent genetic abnormalities	7 (58)
B-ALL with CRLF2 rearrangement	4 (33)
B-ALL with t(1;19)(q23;p13.3); <i>TCF3-PBX1</i>	1 (8)
B-ALL with t(9:22)(q34.1;q11.2); <i>BCR-ABL1</i>	1 (8)
B-ALL with hypodiploidy	1 (8)
B-ALL not otherwise specified	5 (42)
Number of prior treatments, median (range)	3 (2-6)
Prior HSCT, n (%)	3 (25)
Prior blinatumomab, n/N (%)	8/11 (73)
Prior inotuzumab, n/N (%)	5/11 (45)
Prior CD19 CAR T-cell therapy, n/N (%)	3/11 (27)
*11 of the 12 natients who received I D with FC or FCA were treated with LICART22	

*11 of the 12 patients who received LD with FC or FCA were treated with UCART22 B-ALL, B-cell acute lymphoblastic leukemia; BCR, breakpoint cluster region; CAR, chimeric antigen receptor; ECOG PS, Eastern Cooperative Oncology Group performance status; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; HSCT, hematopoietic stem cell transplantation; LD, lymphodepletion; TCF3, transcription factor 3; t, translocation; PBX1, pre-B-cell leukemia homeobox 1; WHO, World Health Organization.

Safety

- The FCA LD regimen was well tolerated, and most treatment-emergent adverse events (TEAEs) of interest (Table 2) were manageable with standard guidelines
- No DLTs were observed
- No immune effector cell-associated neurotoxicity syndrome (ICANS)⁵
- 3 patients experienced cytokine release syndrome (CRS) (grade [G]1, n = 2; G2, n = 1) for 2, 4, and 6 days⁵
- 1 patient experienced GII graft-vs-host disease (GvHD) of the skin⁶
- 2 patients experienced 3 G \geq 3 infections that were not related to study drug
- Pneumonia, septic shock, staphylococcal bacteremia
- Serious TEAEs (all cause) are shown in **Table 3**

Table 2. UCART22-Related TEAEs*

									1	
TEAE, n (%)	Combined FC cohorts n = 5		FCA-DL2 n = 3		FCA-DL2i n = 3		Combined FCA cohorts n = 6		All patients N =11	
	Any	Grade	Any	Grade	Any	Grade	Any	Grade	Any	Grade
	grade	≥3	grade	≥3	grade	≥3	grade	≥3	grade	≥3
CRS ⁵	3 (60)	0	1 (33)	0	2 (67)	0	3 (50)	0	6 (55)	0
Headache	2 (40)	0	0	0	0	0	0	0	2 (18)	0
Arthralgia	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
GvHD in skin ⁶	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
Hypotension	1 (20)	0	0	0	0	0	0	0	1 (9)	0
Myalgia	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0
Pruritus	0	0	1 (33)	0	0	0	1 (17)	0	1 (9)	0
Pyrexia	1 (20)	0	0	0	0	0	0	0	1 (9)	0
Rash	0	0	1 (33)	0	0	0	1 (17)	0	1 (9)	0
CRS_cvtokine release syndrome: DL_dose level: EC_fludarabine + cvclophosphamide: ECA_EC + alemtuzumab: GvHD_graft-vs-host disease: TEAE										

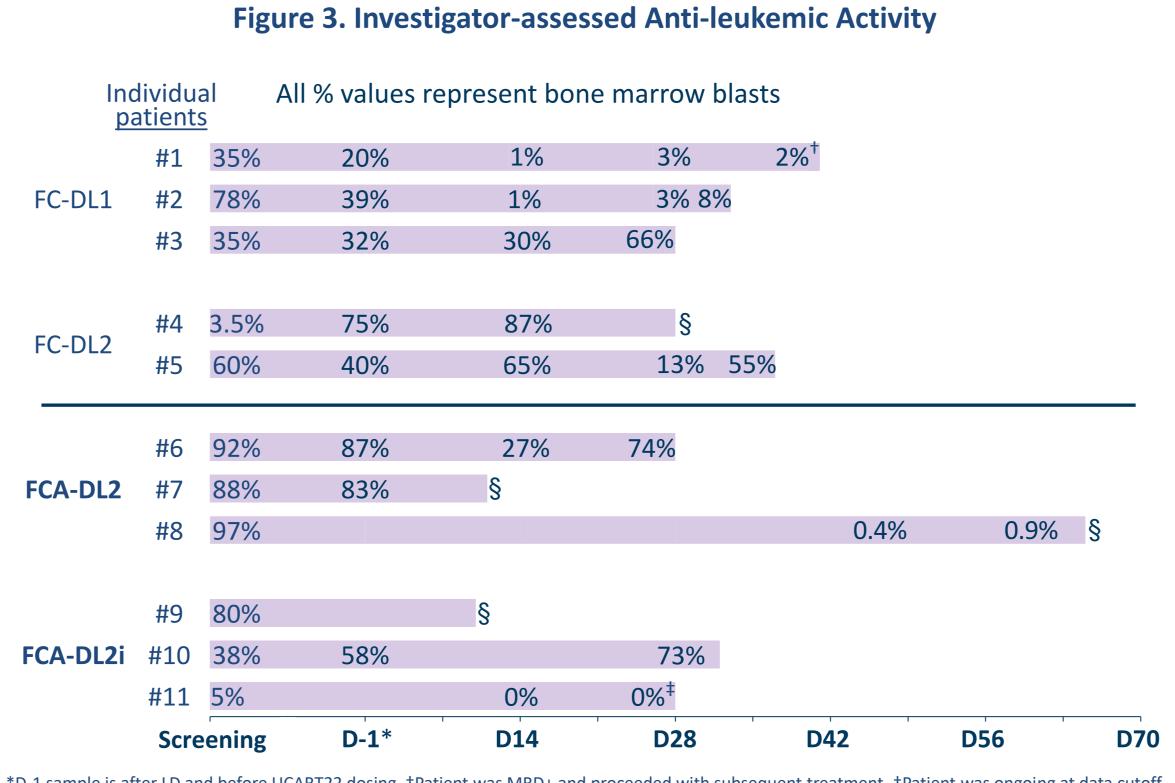
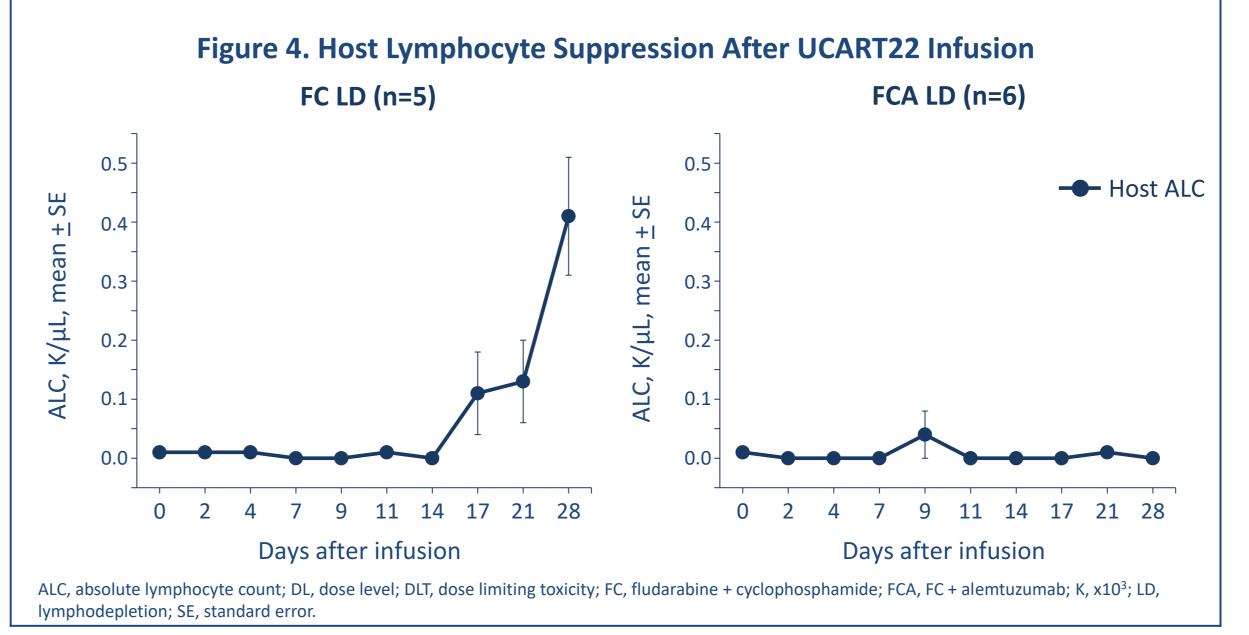

CRS, cytokine release syndrome; DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; GvHD, graft-vs-host disease; TEAE, treatment-emergent adverse event.

Table 3. Serious TEAEs (All Cause)											
TEAE, n (%)	Combined FC cohorts n = 5		FCA-DL2 n = 3		FCA-DL2i n = 3		Combined FCA cohorts n = 6		All patients N =11		
	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	Any grade	Grade ≥3	
Febrile neutropenia	1 (20)	1 (20)	1 (33)	1 (33)	1 (33)	1 (33)	2 (33)	2 (33)	3 (27)	3 (27)	
Acute respiratory failure	1 (20)	1 (20)	0	0	1 (33)	1 (33)	1 (17)	1 (17)	2 (18)	2 (18)	
Bacterial sepsis	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	1 (9)	
Colitis ischemic	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)	
Epistaxis	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)	
Hyperbilirubinemia	0	0	1 (33)	1 (33)	0	0	1 (17)	1 (17)	1 (9)	1 (9)	
Pneumonia	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)	
Sepsis	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	1 (9)	
Subarachnoid hemorrhage	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	1 (9)	
Embolic hemorrhagic and non-hemorrhagic infarct*	0	0	0	0	1 (33)	1 (33)	1 (17)	1 (17)	1 (9)	1 (9)	
GvHD in skin	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0	
Hepatic hematoma	1 (20)	1 (20)	0	0	0	0	0	0	1 (9)	0	
Pyrexia	0	0	1 (33)	0	0	0	1 (17)	0	1 (9)	0	
Sinus tachycardia	0	0	0	0	1 (33)	0	1 (17)	0	1 (9)	0	

*Verbatim term (not coded) DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; GvHD, graft-vs-host disease; TEAE, treatment-emergent adverse event.

Anti-leukemic Activity


Anti-leukemic activity was seen in 2 patients in the FCA cohort (Figure 3)

*D-1 sample is after LD and before UCART22 dosing. +Patient was MRD+ and proceeded with subsequent treatment. +Patient was ongoing at data cutoff (1-Oct 2021). §Presence of peripheral blood blasts. D, day; DL, dose level; FC, fludarabine + cyclophosphamide; FCA, FC + alemtuzumab; LD, lymphodepletion; SCR, screening; MRD, measurable residual disease.

Host Lymphocyte Suppression and UCART22 Expansion

- Host lymphocytes on average remained suppressed throughout the 28-day DLT observation period for all 6 patients in the FCA-DL2 and DL2i cohorts (Figure 4)
- UCART22 proliferation was observed in 3 patients in the FCA cohorts (Figure 5) and correlated with changes in inflammatory cytokines (Figure 6)

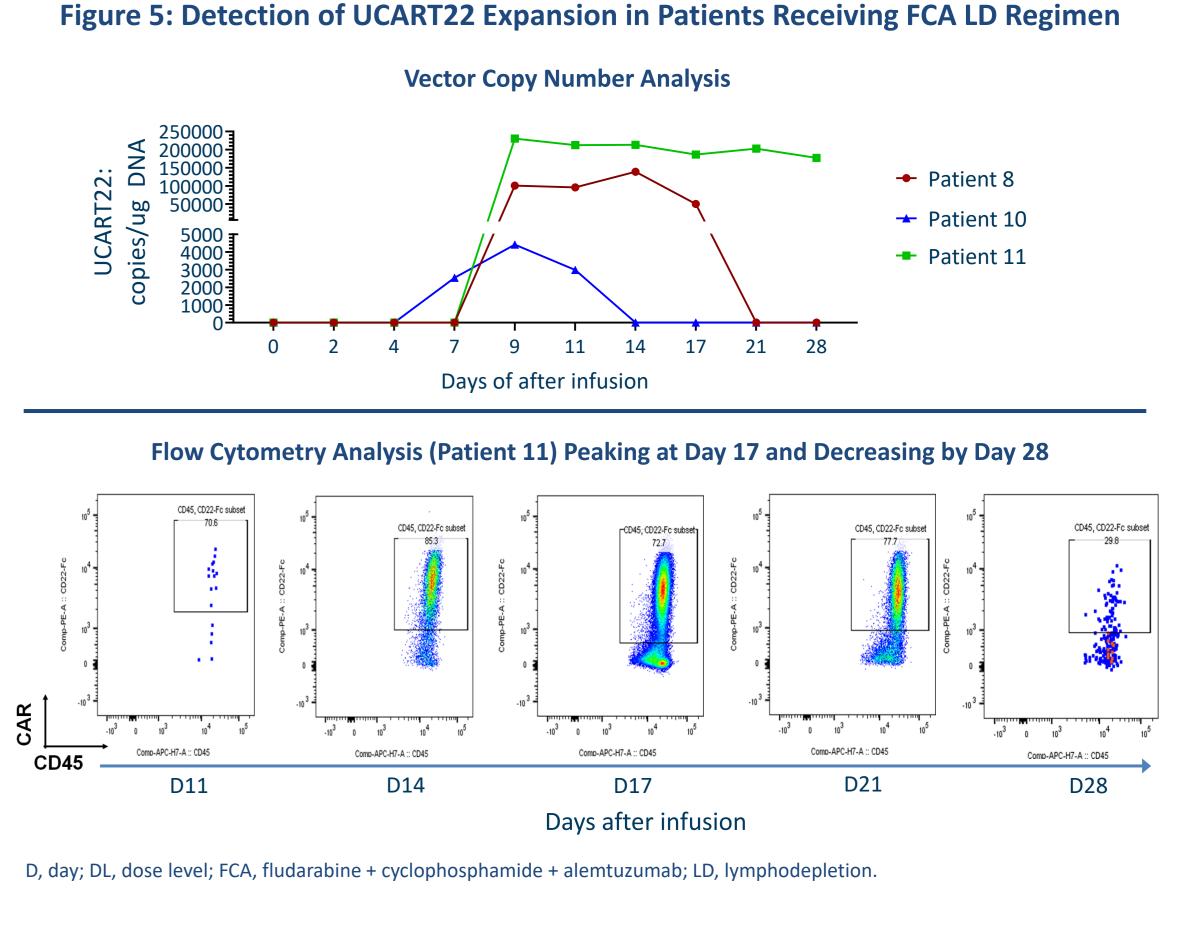
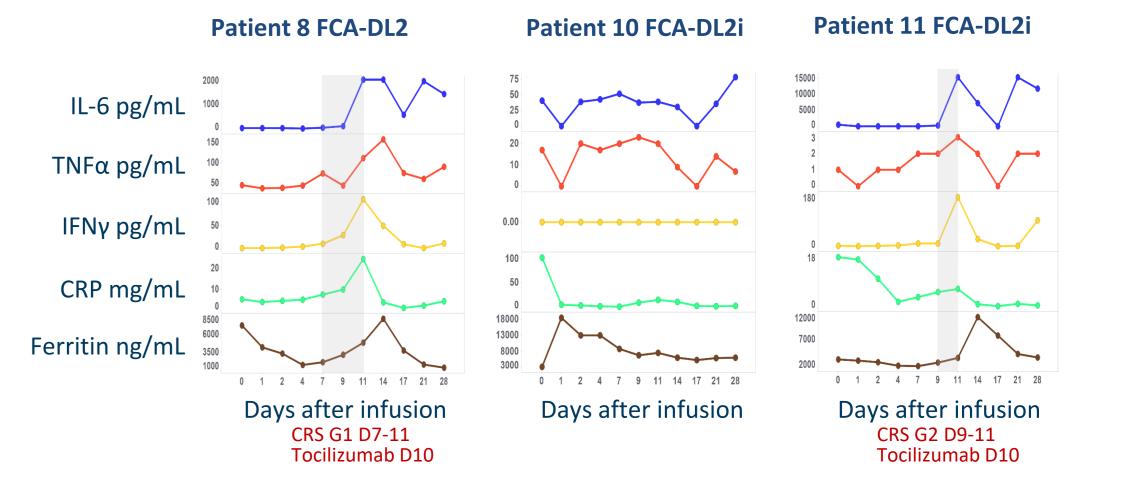



Figure 6. Changes in Inflammatory Markers in Patients With Detectable UCART22 **Cell Expansion**

DL, dose level; FCA, fludarabine + cyclophosphamide + alemtuzumab.

Conclusions

- The FCA LD regimen was well tolerated and associated with improved host lymphocyte suppression and UCART22 expansion
- UCART22 expansion correlated with antileukemic activity with changes in relevant inflammatory markers
- 1 serious AESI was reported (grade II GvHD of the skin)
- Overall, these data support the safety and antileukemic activity of UCART22 after FCA LD in patients with R/R B-ALL
- The study is currently open and enrolling patients at FCA-DL3 (5 × 10⁶ UCART22) cells/kg)
- . Terwilliger T, et al. *Blood Cancer J.* 2017;7(6):e577.
- . Gökbuget N, et al. *Haematologica*. 2016;101(12):1524-33.
- 3. Benjamin R, et al. *Blood*. 2018;132(Suppl 1):Abstract 896.

References

- 4. Jain N, et al. *Blood*. 2020;136(Suppl 1):7-8.
- 5. Lee DW, et al. Biol Blood Marrow Transplant. 2019;25:625-38
- 6. Harris AC, et al. *Biol Blood Marrow Transplant*. 2016;22:4-10.

Acknowledgments

- We thank the patients, families, co-investigators and all study personnel who made this trial possible
- The BALLI-01 study is funded by Cellectis S.A.
- Writing and editorial assistance provided by Brian Kaiser (Medical Communication Company, Inc.), funded by Cellectis S.A.

Disclosures, N. Jain

- Research funding
- Cellectis, Pharmacyclics, AbbVie, Genentech, AstraZeneca, BMS, Pfizer, Servier, ADC Therapeutics, Adaptive Biotechnologies, Incyte, Precision Biosciences, Aprea Therapeutics, Fate Therapeutics, Mingsight, Takeda, Medisix, Loxo Oncology, Novalgen
- Advisory committee / Honoraria
- Cellectis, Pharmacyclics, Janssen, AbbVie, Genentech, AstraZeneca, BMS, Adaptive Biotechnologies, Servier, Precision Biosciences, Beigene, TG Therapeutics, ADC Therapeutics, MEI Pharma

For questions or comments, please contact Dr. Nitin Jain: njain@mdanderson.org For more information, please contact clinicaltrials@cellectis.com