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#1 | Abstract

Adoptive immunotherapy using engineered T-cells has emerged as a powerful approach to treat cancer. The potential of this approach relies on the ability to redirect the specificity of T cells through genetic engineering. Novel specificities in T cells have been typically implemented through the genetic transfer of the so-called chimeric antigen
receptors (CARs). CARs are synthetic receptors composed of an extracellular targeting moiety and one or more intracytoplasmic signaling domain derived from lymphocyte activation receptors. Present CAR architectures are designed to combine all relevant domains within a single polypeptide, thereby; they combine advantages of MHC
unrestricted target recognition to the potent native effector mechanisms of the T cell. Although adoptive transfer of CAR T cells is proven to be an effective cancer therapy, potential adverse effects such as cytokine release syndrome (CRS) and/or the risk of on-target off-tumor targeting are still a major concern.

Synthetic biology applies many of the principles of engineering to the field of biology in order to create biological devices which can ultimately be integrated into increasingly complex systems. Our ability to engineer synthetic systems in primary T-cells that function as Boolean logic gates responding to multiple inputs would benefit adoptive
immunotherapy using engineered T-cells. Exogenous or endogenous environmental signal integration by a modular AND gate may represent an important advancement in improving our control of the safety of the CAR T-cell technology.

Here, we describe the development of novel CAR designs that integrate new components directly within the CAR architecture to improve our capacity to spatiotemporally control and switch the CAR T-cells functions between on and off states. In particular, we showed that such a system can be engineered to control the CAR through addition of an
exogenous small molecule (Rapamycin or synthetic rapalogs) ultimately inducing the cytolytic properties of the engineered T-cell. We showed that oxygen levels can be used to trigger the CAR surface presentation, creating a so called “self-decision making” CAR T-cell.

#3| Exogenous small molecule CAR T-cell control #2| The multichain CAR scaffold #4 | Endogenous microenvironment CAR T-cell control
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To generate a multi-chain CAR (mcCAR) construct based on FceRI receptor, the extracellular domain of the Targeting

alpha chain was deleted and replaced by the CD8a stalk and an scFv specific for a given antigen to constitute (scFv) Hinge. TM Intracellular
an antigen-recognition domain. The native activation domains on the gamma and beta subunits were
substituted by the intracytoplasmic signaling region of the {-chain of the CD3-T cell receptor and by the
signaling domains from co-stimulatory 4-1BB (CD137) respectively. We aimed at engineering a T-cell that
requires a double input, constituted of the antigen recognition and either hypoxic microenvironment or a
small molecule, to obtain an effective output, the T-cell activation and subsequent cytolytic properties.

Principe of the switch-on strategy integrated in the hinge domain. The CAR T-cell performance is intimately linked to an optimal
interaction of the scFv to the targeted antigen. We thus conceived a system where controlled variations in hinge that separates the
scFv from the cell membrane could be obtained upon addition of a small molecule. To switch the scFv/antigen interaction between
on/off states, we inserted either the FRB, the FKBP12, or fusion of the FRB and FKBP12 between the CD8a hinge and the scFv
domains.

We used oxygen sensitive subdomains of the human HIFla, excluding the transcription activation domains, to create a CAR that
will be responsive (protein degradation) to oxygen variation. In particular, three fragments of the HIF1 a that contains key Proline
residues (P402 and P564) known to be hydroxylated in normoxia and involved in interactions with the von Hippel-Lindau tumor
suppressor E3 ubiquitin ligase (VHLE3) multi-protein complex were fused to the mcCAR a chain.

#3c| Controlled CAR T-cells cytotoxicity

#3c| controlled cytotoxicity

#3b| Switch-off properties

#3a| Controlled CAR surface presentation

#3b| Switch-on/off properties

#3a| Controlled CAR surface presentation

(A) Primary T cell with were transfected with mRNAs encoding each chain alternative small molecule (tacrolimus). (A) Remarkably, addition of AP21967. (A) The engineered FKBP/FRB-CAR T-
of the multichain CAR (mcCAR). Upon addition of rapamycin or rapalog, the EC50s (8.2-10.1 nM) are in range with rapamycin cell presented a significant cell lysis activity only in presence
we monitored the surface presentation of the extracellular hinge domain concentrations reported in peripheral blood or tumor of the AP21967. We showed that the hinge engineering did
by tracking the Fab’2 domain of the CD19-targeting scFv (100 nM, 20 h). tissue of patients. (B) To illustrate the possibility to tune  not impair the specificity feature of the engineered T-cell as
While the addition of rapamycin had no effects on the mcCAR, FRB- the amount of CAR locked in an on-state at the cell no cytotoxicity was observed on CD19"¢8 target cells. (B) We
mcCAR and FKB-mcCAR, it strongly improved (up to 15 fold, B) the surface, we used the tacrolimus (FK506), a small molecule found that the level of target cell killing correlated, as
surface detection of the FKBP/FRB-mcCAR and FRB/FKBP-mcCAR known to bind to the FKBP12 without enabling to form a  expected, with variation of the AP21967. We further
constructs turning the system from an off to an on state. (C) Using a complex with the FRB. Addition of increasing amounts of calculated an EC50 of approximately 10nM (12.7 nM), in
mutant o FRB allows tacrolimus competed with AP21967 for the binding site range of the one determined using the surface detection.
on FKBP and decreased the surface detection of the CAR.

#4| Conclusions

Recent clinical implementation of adoptive cell transfer of CAR engineered T-cells has proven a powerful and successful approach to cancer immunotherapy. The capability to control T cells endowed
permanently with such molecules is a key feature concerning the safety of this technology.

Here, we describe the integration of dual signal input strategies in a novel chimeric antigen receptors to extend the possibilities to control the CAR T-Cell functions. We reported a small molecule based
switch technology to control the engineered CAR T-cells. This non-lethal system offers the advantage of a "transient CAR T-cell” for safety while letting open the possibility of multiple specific
cytotoxicity cycles using a small molecule drug. We also provide the proof of principle of engineering a CAR scaffold to create an integrated oxygen-based self decision making T-cell, that allows tuning
the cytolytic properties of CAR T-cells depending on the microenvironment. This work also provides a basic framework to use a multi chain CAR as a platform to create a next generation of smarter CAR
T-cells.
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#1 ‘ Abstract #2 ‘ Sharpening the power of T-cell by editing the genome

#3 | Allogeneic CAR T-Cell Therapy #4 Controlling the therapeutic window

Chimeric antigen receptor (CAR)-redirected T-cells have given rise to Autologous CAR Therapy - \

CONTROLLING THE THERAPEUTIC WINDOW BY TUNNING

long-term durable remissions and remarkable objective response LYMPHODEPLETION
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TALEN™-mediated gene editing for adoptive T-cell therapy.

#8 | Take Home Message

#6 | Gene knockout of Deoxycytodine kinase (dCK) to resist to PNA #1' | TCR deficient CAR T cells Resistant to Alemtuzumab

#5 ‘Off the shelf « TCRa-deficient T-cells” for adoptive immunotherapy

complete elimination of tumor cells at day 13
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1 | Abstract

Chimeric antigen receptor (CAR)-redirected T-cells have
given rise to long-term durable remissions and remarkable
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shelf” CAR T-cells from unrelated third-party donor T-cells.
This platform utilizes Transcription Activator-Like Effector
Nuclease (TALEN) gene editing technology to inactivate the
TCRa constant (TRAC) gene, eliminating the potential for T-
cells bearing alloreactive TCR's to mediate Graft versus Host
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4 \ Activity of UCART123 cells against CD123+ cell lines
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S} \ UCART123 are cytotoxic to leukemia but not normal progenitor cells

UCART123 displays differential activity against AML patient cells and hematopoietic stem/progenitor cells

CB CD34+ Cells

120"
100"
801
601
40
201
° ¢
-20 T T
1:1 1:1
UCART123:CB CD34+ TCRa/ﬁko:CB CD34+

Percent dead cells was evaluated after 24 hours of exposure of primary AML or normal CB CD34+ cells
to UCAR123 or TCR off KO T-cells.

Disease (GvHD). We have previously demonstrated that
editing of the TRAC gene can be achieved at high
frequencies, obtaining up to 80% of TCRa negative cells.

Activity of UCART123 cells (TCRaBNE®) was compared to that of non-edited T-cells expressing the same
anti- CD123 CAR (CLS123).
Cells were prepared according to the following schedule:
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This allows us to efficiently produce TCR-deficient T-cells
that have been shown to no longer mediate alloreactivity in a
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demonstrating specific anti-tumor activity of engineered CAR TALEN® mRNAs using PulseAgile electroporation.
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Cells from one donor can be used to treat
multiple patients

Equivalent antitumor activity was observed in mice treated with UCART123 or CLS123 T-cells.

Patient derived xenografts and CD34+ CB humanized mice were treated once with 3M (AML37, CB) or 10 M
(AML37) CART123 or TCRofp KO cells. Percent human cells was determine at 2 or 3 weeks after treatment.
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